
Akademeia (2013) 3(1): ea0118 

 
Physical Sciences 
A R T I C L E  
 

|  Akademeia.ca  |  VOL 3  |  ISSUE 1  |  1923-1504  1

 
 

‡
Correspondence: adler@students.itb.ac.id 

Received: 20 April 2012; Accepted: 9 October 2012   
 

 

Porosity and mineral fraction estimation of carbonate 
rock with an integrated neural network / image 

processing technique 
  

J. Adler1‡, P.D. Wardaya2, L. Hendrajaya3, B.E.B. Nurhandoko1,4, D. Noeradi5
 

 
1 Wave Inversion and Subsurface Fluid Imaging Laboratory (WISFIR Lab.), Earth Physics Research Division, 

Department of Physics, Institut Teknologi Bandung 
 

2 Department of Petroleum Geoscience, Universiti Teknologi Petronas, Tronoh, Malaysia 
 

3 The Earth Physics Research Division, Department of Physics, Institut Teknologi, Bandung 
 

4 Rock Fluid Imaging Laboratory, Bandung 
 

5 Department of Geology, Institut Teknologi, Bandung 
 
 
Porosity and mineral fraction information are crucial in reservoir characterization, however the 
exact value of these parameters is difficult to measure. We propose a new method for estimating 
the porosity and mineral fraction of carbonate rock from thin section images using an integrated 
neural network/image processing technique. Neural networks were built and trained to classify 
porosity and minerals of carbonate (calcite and dolomite) based on their color after chemical 
treatment. Pixel values of these colors were attributed with a target code value and represented in 
a 2D image (matrix) from which a simple image processing pixel filtering and counting algorithm 
was employed to calculate each fraction. Computation time was less than 40 seconds and 
classification error was less than 2%. This method may be useful as a cost-effective alternative for 
estimating 2D-porosity and mineral fraction for thin section images of rock. Unlike porosimetry or 
X-ray diffraction (XRD) measurements, this method does not require liquid injection at the core-
plug scale. 
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Carbonate rocks are estimated to hold more than 
60% of world’s hydrocarbon reservoir [1, 2, 3, 4]. 
They have a higher degree of complexity than clastic 
rocks, due to the biological processes involved in 

their deposition. Carbonate secreting organisms 
have a powerful chemical and physical impact on 
the porosity and matrix of carbonate formations, 
overruling even the influence of gravity. This is 
unlike the grain sorting of sandstone which is 
guided predictably by gravity and hence results in a 
simple porosity matrix.    
     Calcite, dolomite, and aragonite are the main 
minerals found in carbonate. Although the physical-
chemical properties of these minerals are known 
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very well, we still do not understand the means by 
which they are deposited or organized in carbonate 
rock. This complexity of carbonate matrices is 
believed to cause the high variation in wave 
propagation, electric transport, and heat transfer 
properties of carbonate rock [5]. It may also explain 
why the physical theory for carbonate is not as well 
established as for sandstone. The Gassmann 
equation has been used for calculating the effect of 
fluid substitution on seismic properties using a rock’s 
frame properties [6, 7]: 

 
 
 

(1) 
 
 

 
Where Ksat is the bulk modulus of a rock saturated 
with a fluid of bulk modulus Kfl, K* is the frame bulk 
modulus, K0 is the matrix (grain) bulk modulus, and 
φ is porosity. The matrix of a rock consists of the 
rock-forming minerals, the frame refers to the 
skeleton rock sample, and the pore fluid can be a 
gas, oil, water, or a mixture of all three. The basic 
assumptions made when using the Gassmann 
equation are [8]: 
 

1. The rock (both the matrix and the frame) is 
macroscopically homogeneous. 

2. All the pores are interconnected or 
communicating 

3. The pores are filled with a frictionless fluid 
(liquid, gas, or mixture) 

4. The rock-fluid system under study is closed 
(undrained) 

5. The pore fluid does not interact with the solid 
in a way that would soften or harden the frame 
 

Carbonate rock violates the Gassmann assumptions 
[9]. Firstly, both the matrix and frame of carbonate 
rock is heterogeneous. The porosity types of 
carbonate have been classified by Choquette and 
Pray [10]. Carbonate rock has complex origins and a 
high degree of variations, with no guarantee that 
only one type of porosity exists in each rock. 
Secondly, the pores of carbonate rock are not all 
interconnected. Many marine biological organisms, 
e.g., from the classes of Algae, Brachiopoda, 
Mollusca, Coelenterata, and Echinodermata, have a 
major influence in pore formation. Cavities inside 
the fossil’s body can increase the total porosity with 
no connectivity. One of the difficulties in 
characterizing carbonate reservoirs is the presence 
of these isolated cavities which cannot be filled with 
fluid and are not included in the Gassmann equation.  

I. Conventional methods for evaluating porosity 
and mineral fractions 
 
The conventional method for evaluating the porosity 
of rock is by liquid injection porosimetry at the core-
plug scale. This technique can only estimate rock 
formations with connected pores because the 
injected fluid cannot fill the unconnected pore. 
Despite this, this technique has been employed for 
decades in energy and petroleum industries. It 
requires the core-plug of the sample and 
porosimetry equipment which is costly. An 
alternative to this method, used often by geologists, 
is a digital image processing technique which 
quantifies porosity from thin section images [11- 13]. 
This technique is more cost effective, and is able to 
predict the size of unconnected pores but the 
accuracy of the predictions is not optimal. Current 
image processing techniques can only predict 2D 
porosity and not volumetric porosity.   

The most common technique for determining 
mineral composition of rocks is by X-ray diffraction. 
Since minerals have different crystal structures with 
different atoms, dimensions, and orientations - the 
diffraction pattern for one crystal differs from 
another crystal and this information can be used to 
determine rock composition. However this 
technique may not give a precise estimation of 
mineral composition because the sample measured 
is very small (only several grams) and hence may 
not be a true representation of the entire rock.  

In this paper we propose a technique which 
stains minerals in carbonate so that they can be 
detected visually. Thin section images of these 
samples, showing stained carbonate rock and its 
pores, can thus be used to estimate the mineral 
fraction and porosity. Our analysis method 
integrates neural network and image processing 
techniques. We assume that Aragonite is absent 
from the rock. Due to difficulties in current staining 
techniques for aragonite, this method only provides 
a measurement of calcite and dolomite minerals.  
 
II. Methodology  
 
Backpropagating neural network for pattern 
classification 
Neural networks were integrated with image 
processing techniques to evaluate the porosity and 
mineral fraction of carbonate rock from thin section 
images. We performed the first classification task 
using the neural network, then employed the an 
image processing technique to evaluate the fraction 
of each constituent. It was possible to directly 
classify the original RGB image without any image 
processing. In unprocessed images the pattern was 
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the pixel value of RGB image, ranging from 0-256 for 
each of the three layers. 
 

 
 
Figure 1. Neural network architecture 
 
     We used the backpropagating neural network, a 
type of supervised neural network where the error or 
difference between network output and target is 
back-propagated through neurons until reaching the 
convergence or minimum error. Neural network 
parameters, such as the number of neurons involved, 
determine how quick the network reaches the 
convergence. Faster convergence was achieved by 
increasing the numbers of neurons.  
 
Sample preparation and image capture 
Thin section images of chemically stained carbonate 
rock were obtained from Dr. Peter A. Scholle from 
New Mexico Bureau of Geology and Mineral 
Resource. Briefly, carbonate rock was stained as per 
[14] so that calcite appeared as red, dolomite was 
white, and porosities were blue.   
 
Sample characteristics 
Samples consisted of sedimentary rocks with skeletal 
grains (e.g., bioclasts such as microbes, foraminifers, 
nano-fossils, etc.) and non-skeletal grains (e.g., 
ooids, intraclasts, matrices, etc. ) [14]. Sample #1 (fig. 
6) came from pleistocene coral rock Fm., corehole, 
Bottom Bay, Barbados. Calcite here is stained red and 
dolomite is unstained.  High-Mg calcite allochems, 
such as these red algae, tend to be the first 
components dolomitized and are the ones that most 
commonly retain primary fabrics. Note also the 
partial dolomitization of micritic matrix. Sample #2 
(fig. 7), collected at Jameson Land, East Greenland is 
an oblique cut through stylolite-associated porosity. 
Uplift and load release commonly lead to separation 
of the rock fabric along weak, sometimes clay-rich 
stylolites, generating elongate, often unconnected, 

secondary porosity zones. Hydrocarbon residues are 
seen throughout these stylolitic pore spaces. Sample 
#3 (fig. 8), was collected at Jameson Land, East 
Greenland. In this view, dead-oil residues covered 
an early non-ferroan calcite spar cement. After 
partial flushing of the hydrocarbons, cementation 
continued with ferroan and then non-ferroan calcite 
spar. With close examination, it may be noted that 
the early calcite spars contact the later ferroan and 
non-ferroan spars at only a few points. 
Hydrocarbons essentially coated the calcite 
preventing direct nucleation on the earlier cements. 
Continued meteoric flushing removed some of the 
hydrocarbons and resulted in an irregular linear 
pore (with some asphaltic residues) separating the 
two cements. In the same location with third 
sample, the sample #4 is another view of how 
hydrocarbons can affect cementation. In this case, 
early non-ferroan calcite and a thin zone of ferroan 
calcite spar were followed by hydrocarbon 
migration into the rock. After some flushing, 
cementation continued with further precipitation of 
ferroan calcite and fluorite. The hydrocarbon 
residues were later largely removed, leaving 
irregular pore spaces and scattered asphaltic 
residues between cement generations [14]. 
 

 
 
Figure 2. Illustration of training data collection for dolomite, 
calcite, and pores. Cropped areas show dolomite (white), calcite 
mineral (red), and pores (blue). Dolomite was cropped four 
times, pores were cropped four times, and calcite 3 times. 
 
Image analysis routine 
The sample image was imported to MATLAB and 
read as a RGB image. A back-propagation neural 
network with Lavenberg-Marquadt learning 
algorithm was employed to perform image 
classification. The training input vector along with 
the target vector was input to the network by 
cropping several regions for each constituent. From 
the color pattern the network learned to evaluate all 
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of the pixels in the image and attribute them with a 
target code.  The output data was a 2D image 
(matrix) with completely classified pixel values. This 
matrix was then filtered based on the pixel value by a 
simple filtering algorithm. The unfiltered pixels and 
the fraction of each constituent was calculated using 
a pixel counting algorithm.   
     The training process (illustrated in fig.2) was 
performed by cropping regions of interest out of each 
colored section. The image pattern in each cropped 
segment served as the training input. 
 
III. Results and discussion 
 
Neural Network Classification 
Carbonate rock thin section images from four 
samples were evaluated. A neural network was 
employed to work at a maximum of 25 iterations and 
the mean square error was defined as 10-10 (fig. 3). 
The algorithm could classify the image with an 
average computation time of less than 40 seconds. 
Network training used the Lavenberg-Marquadt 
algorithm. Network learning performance and 
regression of training data, validation data and 
testing data are shown in figures 3 and 4. The 
activation function (eq. 2, table 1), a linear 
combination between inputs and the weights, was 
used to determine the neuronal output:  
 

                         (2) 

                                                     
The images and classification results of Samples #1-4 
are shown in figures 5a, 6a, 7a, and 8a. The color 
look up table (LUT) on the right side of each image 
shows the pixel value attributed by the network. 
 

 
Table 1. Commonly used activation functions of artificial neural 
networks. The sigmoid activation function was used in this study. 
 

 
 
Figure 3. Learning performance of the network (25 iterations 
maximum; X axis) 
 
Sample #1 was 384x521 pixels. It contained skeletal 
grain from fossils composed of dolomite mineral as 
seen in light brown with small amounts of calcite 
spread in the middle of the fossil body. Pore space in 
this sample was very small, seen in blue at top left 
corner and bottom right corner. The network 
yielded perfect classification results as shown in 
figure 5b .Classification error, as reported in table 2 
was very small for this sample (0.52), likely because 
of its simple pixel pattern. The fraction of each 
constituent is also presented in table 2. Calcite 
dominated the fraction by more than 50%. We thus 
classified this sample as limestone. 
     Sample #2 was 357x564 pixels. Calcite and 
dolomite were stained very well, with calcite as light 
pink and dolomite as bright white. Blue pore spaces 
were abundant. Dead oil residue was observed in 
black, filling a small part of pore space region. 
Classification results report an accurate network 
result (fig.6b). Error for this sample was only 0.44 
% (table 2). This sample was also classified as 
limestone, as calcite dominated the fraction by more 
than 70%.  
     Sample #3 was 384x518 pixels. It contained a 
large crack in the pore space, death oil residue, and 
also dolomite mineral in very small amount. The 
error in classification results is seen in the red dot 
inside the dolomite classified region shown in the 
right panel of figure 7. The network also yields the 
very small error by only 0.48%. Pores and calcite 
share nearly equal fraction close to half of the total 
fraction while dolomite holds only 4% of fraction. 
     Sample #4 was 384x521 pixels. This sample 
contained a complex variation of constituents. 
Ferroan Calcite was colored purple or dark blue.  

Activation 
function 

Formula a	=	f(u)  Derivatives  

Sigmoid 
   

Hyperbolic 
tangent    

Inverse 
tangent  

Threshold 
 

Derivatives do not 
exist at u	=	0 

Gaussian 
radial basis    

Linear   a	
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Table 2. Constituent fractions of the samples 
 
 

 
 

Figure 4. a) Neural  network training with 25 iterations. b) 
regression line of training, validation, and testing data. 

 
 
Death oil residue filled part of the pore space region. 
This image was treated differently from the three 
previous samples. The network was trained to 
classify all of the constituents, not only the pore 
spaces, calcite and dolomite, but also the ferroan 

calcite. From figure 8, it can be seen that the error 
in fraction calculation (1.6%) was higher than the 
previous samples, likely due to increased image 
complexity. Ferroan calcite was colored purple, 
which made it difficult to distinguish with calcite 
(red) and pores (blue). This sample contained 
mostly dolomite by 37.9% followed by calcite and 
ferroan calcite (table 2). Pores and death oil 
residues made up 5.4% of the fraction. 
 
IV. Conclusion 
 
The Lavenberg-Marquadt method may be a cost-
effective, efficient, and accurate alternative for 
estimating the 2D porosity and mineral fraction of 
carbonate rock. The network provided a good 
estimate of fraction of calcite, dolomite, and pore 
constituents of the sample. The network yielded 
perfect classification results as shown in figure 5b 
(Sample #1). The average classification error was 
very small, less than 1%. The error depended to a 
large extent on the color pattern complexity the 
sample image. Accuracy in this method greatly 
depends on the sample staining technique. 

Sample Pores (%) Calcite (%) Dolomite (%) Ferroan calcite (%) Error (%) 

1 0.8489 56.6818 42.9889 - 0.5196 

2 10.06 78.8668 11.5186 - 0.4454 

3 47.6257 48.5736 4.2845 - 0.4838 

4 5.4595 30.0825 37.9496 28.0882 1.5798 
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Figure 5. a) Sample #1 with very small porosities seen blue, calcite in red and dolomite white-brown [14]. b) The classification result 
where red is dolomite, yellow is calcite and dark-blue is pore space. 
 
 

 
 
Figure 6. a) Sample #2, where pink is calcite, blue is pore space and bright white is dolomite. Death oil residues are seen in black fin with 
a small amount filling part of pore space [14]. b) The classification result where the color bar indicates the classified constituents.
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Figure 7. a) Sample #3 of with large pore space with small dolomite fraction and several death oil residues [14]. b) The classification 
result. A small error is seen in red. 
 
 

 
 

Figure 8. a) Sample #4 has the most complex composition of minerals in sample. Mg-ferroan calcite is present (purple). Death oil 
residues in black are also filling part of the pore space region [14]. b) The classification result of dolomite, calcite, ferroan-calcite and 
pore space. 
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